Abstract:Drug-Drug Interactions (DDIs) significantly influence therapeutic efficacy and patient safety. As experimental discovery is resource-intensive and time-consuming, efficient computational methodologies have become essential. The predominant paradigm formulates DDI prediction as a drug graph-based link prediction task. However, further progress is hindered by two fundamental challenges: (1) lack of high-quality data: most studies rely on small-scale DDI datasets and single-modal drug representations; (2) lack of standardized evaluation: inconsistent scenarios, varied metrics, and diverse baselines. To address the above issues, we propose OpenDDI, a comprehensive benchmark for DDI prediction. Specifically, (1) from the data perspective, OpenDDI unifies 6 widely used DDI datasets and 2 existing forms of drug representation, while additionally contributing 3 new large-scale LLM-augmented datasets and a new multimodal drug representation covering 5 modalities. (2) From the evaluation perspective, OpenDDI unifies 20 SOTA model baselines across 3 downstream tasks, with standardized protocols for data quality, effectiveness, generalization, robustness, and efficiency. Based on OpenDDI, we conduct a comprehensive evaluation and derive 10 valuable insights for DDI prediction while exposing current limitations to provide critical guidance for this rapidly evolving field. Our code is available at https://github.com/xiaoriwuguang/OpenDDI
Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.
Abstract:Device-edge collaborative inference with Deep Neural Networks (DNNs) faces fundamental trade-offs among accuracy, latency and energy consumption. Current scheduling exhibits two drawbacks: a granularity mismatch between coarse, task-level decisions and fine-grained, packet-level channel dynamics, and insufficient awareness of per-task complexity. Consequently, scheduling solely at the task level leads to inefficient resource utilization. This paper proposes a novel ENergy-ACcuracy Hierarchical optimization framework for split Inference, named ENACHI, that jointly optimizes task- and packet-level scheduling to maximize accuracy under energy and delay constraints. A two-tier Lyapunov-based framework is developed for ENACHI, with a progressive transmission technique further integrated to enhance adaptivity. At the task level, an outer drift-plus-penalty loop makes online decisions for DNN partitioning and bandwidth allocation, and establishes a reference power budget to manage the long-term energy-accuracy trade-off. At the packet level, an uncertainty-aware progressive transmission mechanism is employed to adaptively manage per-sample task complexity. This is integrated with a nested inner control loop implementing a novel reference-tracking policy, which dynamically adjusts per-slot transmit power to adapt to fluctuating channel conditions. Experiments on ImageNet dataset demonstrate that ENACHI outperforms state-of-the-art benchmarks under varying deadlines and bandwidths, achieving a 43.12\% gain in inference accuracy with a 62.13\% reduction in energy consumption under stringent deadlines, and exhibits high scalability by maintaining stable energy consumption in congested multi-user scenarios.
Abstract:Collaborative perception (CP) is a critical technology in applications like autonomous driving and smart cities. It involves the sharing and fusion of information among sensors to overcome the limitations of individual perception, such as blind spots and range limitations. However, CP faces two primary challenges. First, due to the dynamic nature of the environment, the timeliness of the transmitted information is critical to perception performance. Second, with limited computational power at the sensors and constrained wireless bandwidth, the communication volume must be carefully designed to ensure feature representations are both effective and sufficient. This work studies the dynamic scheduling problem in a multi-region CP scenario, and presents a Timeliness-Aware Multi-region Prioritized (TAMP) scheduling algorithm to trade-off perception accuracy and communication resource usage. Timeliness reflects the utility of information that decays as time elapses, which is manifested by the perception performance in CP tasks. We propose an empirical penalty function that maps the joint impact of Age of Information (AoI) and communication volume to perception performance. Aiming to minimize this timeliness-oriented penalty in the long-term, and recognizing that scheduling decisions have a cumulative effect on subsequent system states, we propose the TAMP scheduling algorithm. TAMP is a Lyapunov-based optimization policy that decomposes the long-term average objective into a per-slot prioritization problem, balancing the scheduling worth against resource cost. We validate our algorithm in both intersection and corridor scenarios with the real-world Roadside Cooperative perception (RCooper) dataset. Extensive simulations demonstrate that TAMP outperforms the best-performing baseline, achieving an Average Precision (AP) improvement of up to 27% across various configurations.
Abstract:Multiple Instance Learning (MIL) has enabled weakly supervised analysis of whole-slide images (WSIs) in computational pathology. However, traditional MIL approaches often lose crucial contextual information, while transformer-based variants, though more expressive, suffer from quadratic complexity and redundant computations. To address these limitations, we propose HookMIL, a context-aware and computationally efficient MIL framework that leverages compact, learnable hook tokens for structured contextual aggregation. These tokens can be initialized from (i) key-patch visual features, (ii) text embeddings from vision-language pathology models, and (iii) spatially grounded features from spatial transcriptomics-vision models. This multimodal initialization enables Hook Tokens to incorporate rich textual and spatial priors, accelerating convergence and enhancing representation quality. During training, Hook tokens interact with instances through bidirectional attention with linear complexity. To further promote specialization, we introduce a Hook Diversity Loss that encourages each token to focus on distinct histopathological patterns. Additionally, a hook-to-hook communication mechanism refines contextual interactions while minimizing redundancy. Extensive experiments on four public pathology datasets demonstrate that HookMIL achieves state-of-the-art performance, with improved computational efficiency and interpretability. Codes are available at https://github.com/lingxitong/HookMIL.
Abstract:AI agents capable of controlling user interfaces have the potential to transform human interaction with digital devices. To accelerate this transformation, two fundamental building blocks are essential: high-quality datasets that enable agents to achieve complex and human-relevant goals, and robust evaluation methods that allow researchers and practitioners to rapidly enhance agent performance. In this paper, we introduce DigiData, a large-scale, high-quality, diverse, multi-modal dataset designed for training mobile control agents. Unlike existing datasets, which derive goals from unstructured interactions, DigiData is meticulously constructed through comprehensive exploration of app features, resulting in greater diversity and higher goal complexity. Additionally, we present DigiData-Bench, a benchmark for evaluating mobile control agents on real-world complex tasks. We demonstrate that the commonly used step-accuracy metric falls short in reliably assessing mobile control agents and, to address this, we propose dynamic evaluation protocols and AI-powered evaluations as rigorous alternatives for agent assessment. Our contributions aim to significantly advance the development of mobile control agents, paving the way for more intuitive and effective human-device interactions.
Abstract:With the arrival of 6G, the Internet of Things (IoT) traffic is becoming more and more complex and diverse. To meet the diverse service requirements of IoT devices, massive machine-type communications (mMTC) becomes a typical scenario, and more recently, grant-free random access (GF-RA) presents a promising direction due to its low signaling overhead. However, existing GF-RA research primarily focuses on improving the accuracy of user detection and data recovery, without considering the heterogeneity of traffic. In this paper, we investigate a non-orthogonal GF-RA scenario where two distinct types of traffic coexist: event-triggered traffic with alarm devices (ADs), and status update traffic with monitor devices (MDs). The goal is to simultaneously achieve high detection success rates for ADs and high information timeliness for MDs. First, we analyze the age-based random access scheme and optimize the access parameters to minimize the average age of information (AoI) of MDs. Then, we design an age-based prior information aided autoencoder (A-PIAAE) to jointly detect active devices, together with learned pilots used in GF-RA to reduce interference between non-orthogonal pilots. In the decoder, an Age-based Learned Iterative Shrinkage Thresholding Algorithm (LISTA-AGE) utilizing the AoI of MDs as the prior information is proposed to enhance active user detection. Theoretical analysis is provided to demonstrate the proposed A-PIAAE has better convergence performance. Experiments demonstrate the advantage of the proposed method in reducing the average AoI of MDs and improving the successful detection rate of ADs.
Abstract:Federated edge learning (FEEL) enables collaborative model training across distributed clients over wireless networks without exposing raw data. While most existing studies assume static datasets, in real-world scenarios clients may continuously collect data with time-varying and non-independent and identically distributed (non-i.i.d.) characteristics. A critical challenge is how to adapt models in a timely yet efficient manner to such evolving data. In this paper, we propose FedTeddi, a temporal-drift-and-divergence-aware scheduling algorithm that facilitates fast convergence of FEEL under dynamic data evolution and communication resource limits. We first quantify the temporal dynamics and non-i.i.d. characteristics of data using temporal drift and collective divergence, respectively, and represent them as the Earth Mover's Distance (EMD) of class distributions for classification tasks. We then propose a novel optimization objective and develop a joint scheduling and bandwidth allocation algorithm, enabling the FEEL system to learn from new data quickly without forgetting previous knowledge. Experimental results show that our algorithm achieves higher test accuracy and faster convergence compared to benchmark methods, improving the rate of convergence by 58.4% on CIFAR-10 and 49.2% on CIFAR-100 compared to random scheduling.
Abstract:Federated learning (FL) is a promising paradigm for multiple devices to cooperatively train a model. When applied in wireless networks, two issues consistently affect the performance of FL, i.e., data heterogeneity of devices and limited bandwidth. Many papers have investigated device scheduling strategies considering the two issues. However, most of them recognize data heterogeneity as a property of individual devices. In this paper, we prove that the convergence speed of FL is affected by the sum of device-level and sample-level collective gradient divergence (CGD). The device-level CGD refers to the gradient divergence of the scheduled device group, instead of the sum of the individual device divergence. The sample-level CGD is statistically upper bounded by sampling variance, which is inversely proportional to the total number of samples scheduled for local update. To derive a tractable form of the device-level CGD, we further consider a classification problem and transform it into the weighted earth moving distance (WEMD) between the group distribution and the global distribution. Then we propose FedCGD algorithm to minimize the sum of multi-level CGDs by balancing WEMD and sampling variance, within polynomial time. Simulation shows that the proposed strategy increases classification accuracy on the CIFAR-10 dataset by up to 4.2\% while scheduling 41.8\% fewer devices, and flexibly switches between reducing WEMD and reducing sampling variance.
Abstract:Asynchronous Federated Learning (AFL) enables distributed model training across multiple mobile devices, allowing each device to independently update its local model without waiting for others. However, device mobility introduces intermittent connectivity, which necessitates gradient sparsification and leads to model staleness, jointly affecting AFL convergence. This paper develops a theoretical model to characterize the interplay among sparsification, model staleness and mobility-induced contact patterns, and their joint impact on AFL convergence. Based on the analysis, we propose a mobility-aware dynamic sparsification (MADS) algorithm that optimizes the sparsification degree based on contact time and model staleness. Closed-form solutions are derived, showing that under low-speed conditions, MADS increases the sparsification degree to enhance convergence, while under high-speed conditions, it reduces the sparsification degree to guarantee reliable uploads within limited contact time. Experimental results validate the theoretical findings. Compared with the state-of-the-art benchmarks, the MADS algorithm increases the image classification accuracy on the CIFAR-10 dataset by 8.76% and reduces the average displacement error in the Argoverse trajectory prediction dataset by 9.46%.